何谓海量数据处理?
所谓海量数据处理,无非就是基于海量数据上的存储、处理、操作。何谓海量,就是数据量太大,所以导致要么是无法在较短时间内迅速解决,要么是数据太大,导致无法一次性装入内存。
那解决办法呢?针对时间,我们可以采用巧妙的算法搭配合适的数据结构,如Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie树,针对空间,无非就一个办法:大而化小,分而治之(hash映射),你不是说规模太大嘛,那简单啊,就把规模大化为规模小的,各个击破不就完了嘛。
至于所谓的单机及集群问题,通俗点来讲,单机就是处理装载数据的机器有限(只要考虑cpu,内存,硬盘的数据交互),而集群,机器有多辆,适合分布式处理,并行计算(更多考虑节点和节点间的数据交互)。
再者,通过本blog内的有关海量数据处理的文章:Big Data Processing,我们已经大致知道,处理海量数据问题,无非就是:
- 分而治之/hash映射 + hash统计 + 堆/快速/归并排序;
- 双层桶划分
- Bloom filter/Bitmap;
- Trie树/数据库/倒排索引;
- 外排序;
- 分布式处理之Hadoop/Mapreduce。
Read full article from 教你如何迅速秒杀掉:99%的海量数据处理面试题 - 结构之法 算法之道 - 博客频道 - CSDN.NET
No comments:
Post a Comment