Johnson's algorithm for All-pairs shortest paths - GeeksforGeeks



If we apply Dijkstra’s Single Source shortest path algorithm for every vertex, considering every vertex as source, we can find all pair shortest paths in O(V*VLogV) time. So using Dijkstra’s single source shortest path seems to be a better option than Floyd Warshell, but the problem with Dijkstra’s algorithm is, it doesn’t work for negative weight edge.
The idea of Johnson’s algorithm is to re-weight all edges and make them all positive, then apply Dijkstra’s algorithm for every vertex.

How to transform a given graph to a graph with all non-negative weight edges?
One may think of a simple approach of finding the minimum weight edge and adding this weight to all edges. Unfortunately, this doesn’t work as there may be different number of edges in different paths (See this for an example). If there are multiple paths from a vertex u to v, then all paths must be increased by same amount, so that the shortest path remains the shortest in the transformed graph.
The idea of Johnson’s algorithm is to assign a weight to every vertex. Let the weight assigned to vertex u be h[u]. We reweight edges using vertex weights. For example, for an edge (u, v) of weight w(u, v), the new weight becomes w(u, v) + h[u] – h[v]. The great thing about this reweighting is, all set of paths between any two vertices are increased by same amount and all negative weights become non-negative. Consider any path between two vertices s and t, weight of every path is increased by h[s] – h[t], all h[] values of vertices on path from s to t cancel each other.

How do we calculate h[] values? Bellman-Ford algorithm is used for this purpose. Following is the complete algorithm. A new vertex is added to the graph and connected to all existing vertices. The shortest distance values from new vertex to all existing vertices are h[] values.

Algorithm:
1) Let the given graph be G. Add a new vertex s to the graph, add edges from new vertex to all vertices of G. Let the modified graph be G’.

2) Run Bellman-Ford algorithm on G’ with s as source. Let the distances calculated by Bellman-Ford be h[0], h[1], .. h[V-1]. If we find a negative weight cycle, then return. Note that the negative weight cycle cannot be created by new vertex s as there is no edge to s. All edges are from s.

3) Reweight the edges of original graph. For each edge (u, v), assign the new weight as “original weight + h[u] – h[v]“.

4) Remove the added vertex s and run Dijkstra’s algorithm for every vertex.


Read full article from Johnson's algorithm for All-pairs shortest paths - GeeksforGeeks


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts