这种加密模式有一个最大弱点:甲方必须把加密规则告诉乙方,否则无法解密。保存和传递密钥,就成了最头疼的问题。 1976年,两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。这被称为 "Diffie-Hellman密钥交换算法" 。这个算法启发了其他科学家。人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应关系即可,这样就避免了直接传递密钥。 这种新的加密模式被称为"非对称加密算法"。 (2)甲方获取乙方的公钥,然后用它对信息加密。 (3)乙方得到加密后的信息,用私钥解密。 如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。 1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做 RSA算法 。从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。 这种算法非常 可靠 ,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。也就是说,长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。 下面,我就进入正题,解释RSA算法的原理。文章共分成两部分,今天是第一部分,介绍要用到的四个数学概念。你可以看到,RSA算法并不难,只需要一点 数论知识 就可以理解。 二、互质关系 如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是 互质关系 (coprime)。比如,15和32没有公因子,所以它们是互质关系。这说明,不是质数也可以构成互质关系。 关于互质关系,不难得到以下结论: 4.
Read full article from RSA算法原理(一) - 阮一峰的网络日志
No comments:
Post a Comment