LeetCode 488 Zuma Game 解题报告 - Hanker Zheng's



LeetCode 488 Zuma Game 解题报告 - Hanker Zheng's

LeetCode 488 Zuma Game Think about Zuma Game. You have a row of balls on the table, colored red(R), yellow(Y), blue(B), green(G), and white(W). You also have several balls in your hand.

Each time, you may choose a ball in your hand, and insert it into the row (including the leftmost place and rightmost place). Then, if there is a group of 3 or more balls in the same color touching, remove these balls. Keep doing this until no more balls can be removed.

Find the minimal balls you have to insert to remove all the balls on the table. If you cannot remove all the balls, output -1.

Examples:

Input: "WRRBBW", "RB"
Output: -1
Explanation: WRRBBW -> WRR[R]BBW -> WBBW -> WBB[B]W -> WW

Input: "WWRRBBWW", "WRBRW"
Output: 2
Explanation: WWRRBBWW -> WWRR[R]BBWW -> WWBBWW -> WWBB[B]WW -> WWWW -> empty

Input:"G", "GGGGG"
Output: 2
Explanation: G -> G[G] -> GG[G] -> empty

Input: "RBYYBBRRB", "YRBGB"
Output: 3
Explanation: RBYYBBRRB -> RBYY[Y]BBRRB -> RBBBRRB -> RRRB -> B -> B[B] -> BB[B] -> empty

Note: You may assume that the initial row of balls on the table won't have any 3 or more consecutive balls with the same color. The number of balls on the table won't exceed 20, and the string represents these balls is called "board" in the input. The number of balls in your hand won't exceed 5, and the string represents these balls is called "hand" in the input. Both input strings will be non-empty and only contain characters 'R','Y','B','G','W'.


Read full article from LeetCode 488 Zuma Game 解题报告 - Hanker Zheng's


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts