Design an efficient data structure for given operations | GeeksforGeeks



Design a Data Structure for the following operations. The data structure should be efficient enough to accommodate the operations according to their frequency.
1) findMin() : Returns the minimum item.
   Frequency: Most frequent

2) findMax() : Returns the maximum item.
    Frequency: Most frequent

3) deleteMin() : Delete the minimum item.
    Frequency: Moderate frequent 

4) deleteMax() : Delete the maximum item.
    Frequency: Moderate frequent 

5) Insert() : Inserts an item.
    Frequency: Least frequent

6) Delete() : Deletes an item. 
    Frequency: Least frequent.
simple solution is to maintain a sorted array where smallest element is at first position and largest element is at last. The time complexity of findMin(), findMAx() and deleteMax() is O(1). But time complexities of deleteMin(), insert() and delete() will be O(n).
Can we do the most frequent two operations in O(1) and other operations in O(Logn) time?.
The idea is to use two binary heaps (one max and one min heap):t we have used doubly linked list as a mutual data structure. The doubly linked list contains all input items and indexes of corresponding min and max heap nodes. The nodes of min and max heaps store addresses of nodes of doubly linked list. The root node of min heap stores the address of minimum item in doubly linked list. Similarly, root of max heap stores address of maximum item in doubly linked list. Following are the details of operations.

Read full article from Design an efficient data structure for given operations | GeeksforGeeks

No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts