Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring. For "(()", the longest valid parentheses substring is "()", which has length = 2. Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.
// Start typing your Java solution below
// DO NOT write main() function
int n = s.length();
int[] dp = new int[n];
java.util.Arrays.fill(dp, 0);
int max = 0;
for (int i = n - 2; i >= 0; i--) {
if (s.charAt(i) == '(') {
int j = i + 1 + dp[i + 1];
if (j < n && s.charAt(j) == ')') {
dp[i] = dp[i + 1] + 2;
int k = 0;
if (j + 1 < n) {
k = dp[j + 1];
}
dp[i] += k;
}
max = Math.max(max, dp[i]);
}
}
return max;
}
Also check http://yucoding.blogspot.com/2013/01/leetcode-question-46-longest-valid.html
Read full article from LeetCode - Longest Valid Parentheses | Darren's Blog
public int longestValidParentheses(String s) {
if (s == null || s.length() == 0)
return 0;
int longestLength = 0; // Length of the longest valid parentheses
int start = 0; // The start index of the possibly longest valid parentheses
Stack<Integer> stack = new Stack<Integer>();
// One-pass scan
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') { // Opening parenthesis
stack.push(i); // Push its index
} else { // Closing parenthesis
if (stack.empty()) { // No opening parenthesis to match
start = i + 1; // i+1 is the start of next possibly LVP
} else {
stack.pop(); // The index of the opening parenthesis matched by s[i]
if (stack.empty()) // s[start...i] is matched
longestLength = Math.max(longestLength, i-start+1);
else // s[stack.peek()] is unmatched; s[stack.peek()+1...i] is matched
longestLength = Math.max(longestLength, i-stack.peek());
}
}
}
return longestLength;
}
DP, Code from http://www.darrensunny.me/leetcode-longest-valid-parentheses/
这道题可以用一维动态规划逆向求解。假设输入括号表达式为String s,维护一个长度为s.length的一维数组dp[],数组元素初始化为0。 dp[i]表示从s[i]到s[s.length - 1]最长的有效匹配括号子串长度。则存在如下关系:
- dp[s.length - 1] = 0;
- 从i - 2 -> 0逆向求dp[],并记录其最大值。若s[i] == '(',则在s中从i开始到s.length - 1计算s[i]的值。这个计算分为两步,通过dp[i + 1]进行的(注意dp[i + 1]已经在上一步求解):
- 在s中寻找从i + 1开始的有效括号匹配子串长度,即dp[i + 1],跳过这段有效的括号子串,查看下一个字符,其下标为j = i + 1 + dp[i + 1]。若j没有越界,并且s[j] == ‘)’,则s[i ... j]为有效括号匹配,dp[i] =dp[i + 1] + 2。
- 在求得了s[i ... j]的有效匹配长度之后,若j + 1没有越界,则dp[i]的值还要加上从j + 1开始的最长有效匹配,即dp[j + 1]。
// Start typing your Java solution below
// DO NOT write main() function
int n = s.length();
int[] dp = new int[n];
java.util.Arrays.fill(dp, 0);
int max = 0;
for (int i = n - 2; i >= 0; i--) {
if (s.charAt(i) == '(') {
int j = i + 1 + dp[i + 1];
if (j < n && s.charAt(j) == ')') {
dp[i] = dp[i + 1] + 2;
int k = 0;
if (j + 1 < n) {
k = dp[j + 1];
}
dp[i] += k;
}
max = Math.max(max, dp[i]);
}
}
return max;
}
Also check http://yucoding.blogspot.com/2013/01/leetcode-question-46-longest-valid.html
Read full article from LeetCode - Longest Valid Parentheses | Darren's Blog
No comments:
Post a Comment