Given a polygon and a point ‘p’, find if ‘p’ lies inside the polygon or not. The points lying on the border are considered inside.
Read full article from How to check if a given point lies inside or outside a polygon? | GeeksforGeeks
Following is a simple idea to check whether a point is inside or outside.
1) Draw a horizontal line to the right of each point and extend it to infinity 1) Count the number of times the line intersects with polygon edges. 2) A point is inside the polygon if either count of intersections is odd or point lies on an edge of polygon. If none of the conditions is true, then point lies outside.
// Returns true if the point p lies inside the polygon[] with n vertices
bool
isInside(Point polygon[],
int
n, Point p)
{
// There must be at least 3 vertices in polygon[]
if
(n < 3)
return
false
;
// Create a point for line segment from p to infinite
Point extreme = {INF, p.y};
// Count intersections of the above line with sides of polygon
int
count = 0, i = 0;
do
{
int
next = (i+1)%n;
// Check if the line segment from 'p' to 'extreme' intersects
// with the line segment from 'polygon[i]' to 'polygon[next]'
if
(doIntersect(polygon[i], polygon[next], p, extreme))
{
// If the point 'p' is colinear with line segment 'i-next',
// then check if it lies on segment. If it lies, return true,
// otherwise false
if
(orientation(polygon[i], p, polygon[next]) == 0)
return
onSegment(polygon[i], p, polygon[next]);
count++;
}
i = next;
}
while
(i != 0);
// Return true if count is odd, false otherwise
return
count&1;
// Same as (count%2 == 1)
}
bool
onSegment(Point p, Point q, Point r)
{
if
(q.x <= max(p.x, r.x) && q.x >= min(p.x, r.x) &&
q.y <= max(p.y, r.y) && q.y >= min(p.y, r.y))
return
true
;
return
false
;
}
// To find orientation of ordered triplet (p, q, r).
// The function returns following values
// 0 --> p, q and r are colinear
// 1 --> Clockwise
// 2 --> Counterclockwise
int
orientation(Point p, Point q, Point r)
{
int
val = (q.y - p.y) * (r.x - q.x) -
(q.x - p.x) * (r.y - q.y);
if
(val == 0)
return
0;
// colinear
return
(val > 0)? 1: 2;
// clock or counterclock wise
}
// The function that returns true if line segment 'p1q1'
// and 'p2q2' intersect.
bool
doIntersect(Point p1, Point q1, Point p2, Point q2)
{
// Find the four orientations needed for general and
// special cases
int
o1 = orientation(p1, q1, p2);
int
o2 = orientation(p1, q1, q2);
int
o3 = orientation(p2, q2, p1);
int
o4 = orientation(p2, q2, q1);
// General case
if
(o1 != o2 && o3 != o4)
return
true
;
// Special Cases
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
if
(o1 == 0 && onSegment(p1, p2, q1))
return
true
;
// p1, q1 and p2 are colinear and q2 lies on segment p1q1
if
(o2 == 0 && onSegment(p1, q2, q1))
return
true
;
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
if
(o3 == 0 && onSegment(p2, p1, q2))
return
true
;
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
if
(o4 == 0 && onSegment(p2, q1, q2))
return
true
;
return
false
;
// Doesn't fall in any of the above cases
}
No comments:
Post a Comment