Implement Queue using Stacks | GeeksforGeeks



Method 2 (By making deQueue operation costly)
In this method, in en-queue operation, the new element is entered at the top of stack1. In de-queue operation, if stack2 is empty then all the elements are moved to stack2 and finally top of stack2 is returned.
enQueue(q,  x)
  1) Push x to stack1 (assuming size of stacks is unlimited).

deQueue(q)
  1) If both stacks are empty then error.
  2) If stack2 is empty
       While stack1 is not empty, push everything from satck1 to stack2.
  3) Pop the element from stack2 and return it. 
Method 2 is definitely better than method 1. Method 1 moves all the elements twice in enQueue operation, while method 2 (in deQueue operation) moves the elements once and moves elements only if stack2 empty.
void enQueue(struct queue *q, int x)
{
   push(&q->stack1, x);
}
  
/* Function to dequeue an item from queue */
int deQueue(struct queue *q)
{
   int x;
  
   /* If both stacks are empty then error */
   if(q->stack1 == NULL && q->stack2 == NULL)
   {
      printf("Q is empty");
      getchar();
      exit(0);
   }
 
   /* Move elements from satck1 to stack 2 only if
       stack2 is empty */
   if(q->stack2 == NULL)
   {
     while(q->stack1 != NULL)
     {
        x = pop(&q->stack1);
        push(&q->stack2, x);
     }
   }
 
   x = pop(&q->stack2);
   return x;
}
Method 1 (By making enQueue operation costly)
This method makes sure that newly entered element is always at the top of stack 1, so that deQueue operation just pops from stack1. To put the element at top of stack1, stack2 is used.
enQueue(q, x)
  1) While stack1 is not empty, push everything from satck1 to stack2.
  2) Push x to stack1 (assuming size of stacks is unlimited).
  3) Push everything back to stack1.

dnQueue(q)
  1) If stack1 is empty then error
  2) Pop an item from stack1 and return it
Read full article from Implement Queue using Stacks | GeeksforGeeks

No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts