LeetCode - Triangle | Darren's Blog



Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below
For example, given the following triangle
[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Bottom-Up: code from http://www.programcreek.com/2013/01/leetcode-triangle-java/
public int minimumTotal(ArrayList<ArrayList<Integer>> triangle) {
 int[] total = new int[triangle.size()];
 int l = triangle.size() - 1;
 
 for (int i = 0; i < triangle.get(l).size(); i++) {
  total[i] = triangle.get(l).get(i);
 }
 
 // iterate from last second row
 for (int i = triangle.size() - 2; i >= 0; i--) {
  for (int j = 0; j < triangle.get(i + 1).size() - 1; j++) {
   total[j] = triangle.get(i).get(j) + Math.min(total[j], total[j + 1]);
  }
 }
 
 return total[0];
}
Top-Down code from http://www.darrensunny.me/leetcode-triangle/
Let t and mps[i][j] denote the triangle and the minimum path sum from top to the j-th value in the i-th row, respectively. The following recursive equation can be observed:
t[i][j]=mps[i1][j]+t[i][j]mps[i1][j1]+t[i][j]min(t[i1][j1],t[i1][j])+t[i][j]if j=0if j=iotherwise
public int minimumTotal(ArrayList<ArrayList<Integer>> triangle) {
        if (triangle == null || triangle.size() == 0)
            return 0;
 
        // mps: minimum path sums from top to row i
        int n = triangle.size();
        int[] mps = new int[n];
        mps[0] = triangle.get(0).get(0);
 
        // Work on each row one at a time
        for (int i = 1; i < n; i++) {
            ArrayList<Integer> currenRow = triangle.get(i);
            int temp1 = mps[0];     // Cache the value before it is overwritten
            mps[0] += currenRow.get(0);     // Only one path to the first value (all the way to the first)
            for (int j = 1; j < i; j++) {
                int temp2 = mps[j];     // Cache the value before it is overwritten
                mps[j] = Math.min(temp1, temp2) + currenRow.get(j); // Select the smaller from the two possible ways
                temp1 = temp2;
            }
            mps[i] = temp1 + currenRow.get(i);  // Only one path to the last value (all the way to the last)
        }
 
        // Find the minimum path sum from top to bottom
        int minimum = mps[0];
        for (int i = 1; i < n; i++) {
            minimum = Math.min(minimum, mps[i]);
        }
 
        return minimum;
    }
Top-Down: do it in place: code from http://yucoding.blogspot.com/2013/04/leetcode-question-112-triangle.html
int minimumTotal(vector<vector<int> > &triangle) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        int n = triangle.size();
        if (n==0){return 0;}
         
        for (int i=1;i<n;i++){
            for (int j=0;j<triangle[i].size();j++){
                if (j==0){triangle[i][j] += triangle[i-1][j];}
                if (j>0){
                    if (i>j){
                        triangle[i][j] += min(triangle[i-1][j-1],triangle[i-1][j]);
                    }else{
                        triangle[i][j] += triangle[i-1][j-1];
                    }
                     
                }
                 
            }
        }
        sort(triangle[n-1].begin(),triangle[n-1].end());
        return triangle[n-1][0];   
    }
Read full article from LeetCode - Triangle | Darren's Blog

No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts