Fork/Join (The Java(tm) Tutorials > Essential Classes > Concurrency)



The fork/join framework is an implementation of the ExecutorService interface that helps you take advantage of multiple processors. It is designed for work that can be broken into smaller pieces recursively. The goal is to use all the available processing power to enhance the performance of your application.
As with any ExecutorService implementation, the fork/join framework distributes tasks to worker threads in a thread pool. The fork/join framework is distinct because it uses awork-stealing algorithm. Worker threads that run out of things to do can steal tasks from other threads that are still busy.
The center of the fork/join framework is the ForkJoinPool class, an extension of the AbstractExecutorService class. ForkJoinPool implements the core work-stealing algorithm and can execute ForkJoinTask processes.

The first step for using the fork/join framework is to write code that performs a segment of the work. Your code should look similar to the following pseudocode:
if (my portion of the work is small enough)
  do the work directly
else
  split my work into two pieces
  invoke the two pieces and wait for the results
Wrap this code in a ForkJoinTask subclass, typically using one of its more specialized types, either RecursiveTask (which can return a result) or RecursiveAction.
After your ForkJoinTask subclass is ready, create the object that represents all the work to be done and pass it to the invoke() method of a ForkJoinPool instance.

protected void compute() {
    if (mLength < sThreshold) {
        computeDirectly();
        return;
    }
    
    int split = mLength / 2;
    
    invokeAll(new ForkBlur(mSource, mStart, split, mDestination),
              new ForkBlur(mSource, mStart + split, mLength - split,
                           mDestination));
}

One such implementation, introduced in Java SE 8, is used by the java.util.Arrays class for its parallelSort() methods. These methods are similar to sort(), but leverage concurrency via the fork/join framework. Parallel sorting of large arrays is faster than sequential sorting when run on multiprocessor systems.

Another implementation of the fork/join framework is used by methods in the java.util.streams package, which is part of Project Lambda scheduled for the Java SE 8 release.
Read full article from Fork/Join (The Java™ Tutorials > Essential Classes > Concurrency)

No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts