Leveraging UIMA in Spark | Spark Summit



Leveraging UIMA in Spark | Spark Summit

June 30 - July 2, 2014 Spark Summit 2014 brought the Apache Spark community together on June 30- July 2, 2015 at the The Westin St. Francis in San Francisco. It featured production users of Spark, Shark, Spark Streaming and related projects. Philip Ogren (Oracle) Much of the Big Data that Spark welders tackle is unstructured text that requires text processing techniques. For example, performing named entity extraction on tweets or sentiment analysis on customer reviews are common activities. The Unstructured Information Management Architecture (UIMA) framework is an Apache project that provides APIs and infrastructure for building complex and robust text analytics systems. A typical system built on UIMA defines a collection of analysis engines (such as e.g. a tokenizer, part-of-speech tagger, named entity recognizer, etc.) which are executed according to arbitrarily complex flow control definitions.

Read full article from Leveraging UIMA in Spark | Spark Summit


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts