《如何阅读一本书》阅读报告 - HappyAngel - 博客园



《如何阅读一本书》阅读报告 - HappyAngel - 博客园

一 本书主线
  阅读一本书应该是一个主动的过程,本书的实质在于强调主动阅读,并详细地给出了指导意见。用一句话概括本书的主旨的话,应该是 读任何书都应该带着问题阅读并能对阅读中看到的观点进行评价,这才能算得上前文说的主动阅读。
 
二 本书脉络
  本书主要围着两大主题进行组织,第一:按照阅读的四大层次进行介绍;第二:按照阅读书籍的类型进行介绍;这里的介绍都指的是阅读的方法。
  首先,按照阅读的四种层次可以分为:
  1. 基础阅读:目的在于回答某个具体的句子在说什么?一般人在具备了某些语言的基本能力之后就应该可以进行这种类型的阅读;
  2. 检视阅读:系统化的略读或粗浅的阅读,一般两种目的:决定一本书是否值得阅读,并掌握一本书的轮廓;粗浅的阅读一本较为困难的书,对书的整体有个把握;
  3. 分析阅读:目的在于详尽地了解一本书的观点,并对它们做出自己的判断(同意或不同意,理由是什么?)
  4. 主题阅读:目的在于通过阅读一系列的书来解决一个具体的问题,比起前面的阅读类型是最高层次的阅读
  其次按照阅读书籍类型分:

Read full article from 《如何阅读一本书》阅读报告 - HappyAngel - 博客园


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts