就是经典约瑟夫环问题的裸题
我一开始一直没理解这个递推是怎么来的,后来终于理解了
假设问题是从n个人编号分别为0...n-1,取第k个,
则第k个人编号为k-1的淘汰,剩下的编号为 0,1,2,3...k-2,k,k+1,k+2...
此时因为从刚刚淘汰那个人的下一个开始数起,因此重新编号
把k号设置为0,则
k 0
k+1 1
...
0 n-k
1 n-k+1
假设已经求得了n-1个人情况下的最终胜利者保存在f[n-1]中,则毫无疑问,该胜利者还原到原来的真正编号即为 (f[n-1]+k)%n (因为第二轮重新编号的时候,相当于把每个人的编号都减了k,因此重新+k即可恢复到原来编号)。由此,我们可以想象,当最终只剩下一个人的时候,该人即为胜利者,此时重新编号,因为只有一个人,所以此时f[1]=0
这样f[2]=(f[1]+k)%2,这样就可以求出最终胜利者在2个人的时候的情况下的编号,由递推公式f[n]=(f[n-1]+k)%n,可递推到最初编号序列中该胜利者的编号。
因此用这个方法,只需一遍On的扫描,即可求出最终答案
不过该题要求编号从1开始,只要把f[n]+1即可,同时,该题指定了第一个要删除的人必须为编号为m的人,其实也不难,求出f[n]之后,把原本编号为0的位置移到跟m只相距k的位置即可实现第一次删除的编号为m。所以最终 ans=(f[n]+1+m-k);
当然因为m-k可能为负数,导致整个ans为负,这样其实最后+n即可解决。
Read full article from LA 3882 经典约瑟夫环问题的数学递推解法 - KRisen - 博客园
No comments:
Post a Comment