Patience sorting - Wikipedia



Take a deck of cards labeled 1, 2, 3, … , n. The deck is shuffled, cards are turned up one at a time and dealt into piles on the table, according to the rule

A low card may be placed on a higher card (e.g. 2 may be placed on 7), or may be put into a new pile to the right of the existing piles.
At each stage we see the top card on each pile. If the turned up card is higher than the cards showing, then it must be put into a new pile to the right of the others. The object of the game is to finish with as few piles as possible.

played with the greedy strategy, i.e., placing each new card on the leftmost pile that is legally possible to use. At each stage of the game, under this strategy, the labels on the top cards of the piles are increasing from left to right. To recover the sorted sequence, repeatedly remove the minimum visible card.

public static <E extends Comparable<? super E>> void sort (E[] n)
    {
        List<Pile<E>> piles = new ArrayList<Pile<E>>();
        // sort into piles
        for (E x : n)
        {
            Pile<E> newPile = new Pile<E>();
            newPile.push(x);
            int i = Collections.binarySearch(piles, newPile);
            if (i < 0) i = ~i;
            if (i != piles.size())
                piles.get(i).push(x);
            else
                piles.add(newPile);
        }
        System.out.println("longest increasing subsequence has length = " + piles.size());
 
        // priority queue allows us to retrieve least pile efficiently
        PriorityQueue<Pile<E>> heap = new PriorityQueue<Pile<E>>(piles);
        for (int c = 0; c < n.length; c++)
        {
            Pile<E> smallPile = heap.poll();
            n[c] = smallPile.pop();
            if (!smallPile.isEmpty())
                heap.offer(smallPile);
        }
        assert(heap.isEmpty());
    }
 
    private static class Pile<E extends Comparable<? super E>> extends Stack<E> implements Comparable<Pile<E>>
    {
        public int compareTo(Pile<E> y) { return peek().compareTo(y.peek()); }
    }
Also so refer to http://wordaligned.org/articles/patience-sort.html
Read full article from Patience sorting - Wikipedia, the free encyclopedia

No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts