Abandon の 线段树【专辑】(长期更新) - AbandonZHANG - 博客园



先从zkw大神的《统计与力量》感受了zkw线段树的优美(在此先ym 3分钟……),但是自己还是不能深入理解;后来又看了NotOnlySuccess的线段树,虽然是用递归形式但从优美程度来讲一点儿也不差(zkw的非递归自己在拓展方面很难伸展,功力还不够……),我的线段树主要就是受这两位大牛的风格影响了~~~然后练习呀什么的基本是跟着HH神(NotOnlySuccess)的【完全版】线段树来的,然后在其他地方看到的很好的题也自己加了进来。

==========================================================================================================================================  

  对于各类线段树问题来说,

  结点中主要有两种需要维护的数据,一个是标记,一个是统计。 

  主要有两种维护操作,一种是标记下放(懒惰标记,用于区间修改),一种是统计汇总(用于区间查询)。

  可以看出这里我的建树方式采用的是zkw的满二叉树的形式,虽然浪费一些空间(?)但是在点区间对应查找和调试上都非常方便


Read full article from Abandon の 线段树【专辑】(长期更新) - AbandonZHANG - 博客园


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts