通过“分布式系统的8大谬误”反思APP的设计 第七篇 谬误7:网络传输无需任何开销 - 简书



通过"分布式系统的8大谬误"反思APP的设计 第七篇 谬误7:网络传输无需任何开销 - 简书

Arnon Rotem-Gal-Oz's在解释这条谬误的时候具体指出了,需要从一下两方面来看:

第一,你需要考虑应用和网络接口之间的数据传输开销。除了带宽和时延会带来开销,数据的序列化和反序列化也会影响到性能。苹果在2010 WWDC session 117"基于服务器的用户体验"的演讲中,对比了xml,json,plist这几种数据传输格式的大小以及加载时间。对比结果表明,各种数据格式的大小都差不多,但是解析的时间相差很大;解析xml需要812毫秒,json需要416毫秒,ascii格式的plist需要140ms,而二进制数据流只需要19ms。

其次,你需要考虑维护网络服务以及基础设施带来的开销。一个用户会给服务器带来多大的负载?这些负载的特性是什么样的?服务器可以同时处理多少请求,扩展服务器需要花费多少钱?使用你的app需要花费你用户多少钱(这些用户可能是按流量给运营商支付流量费,也有可能是包月)。


Read full article from 通过"分布式系统的8大谬误"反思APP的设计 第七篇 谬误7:网络传输无需任何开销 - 简书


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts