Cracking the coding interview--Q19.11



Cracking the coding interview--Q19.11

Design an algorithm to find all pairs of integers within an array which sum to a specified value.

译文:

设计一个算法,找到数组中所有和为指定值的整数对。

解答

时间复杂度O(n)的解法

我们可以用一个哈希表或数组或bitmap(后两者要求数组中的整数非负)来保存sum-x的值, 这样我们就只需要遍历数组两次即可找到和为指定值的整数对。这种方法需要O(n) 的辅助空间。如果直接用数组或是bitmap来做,辅助空间的大小与数组中的最大整数相关, 常常导致大量空间浪费。比如原数组中有5个数:1亿,2亿,3亿,4亿,5亿。sum为5亿, 那么我们将bitmap中的sum-x位置1,即第4亿位,第3亿位,第2亿位,第1亿位,第0位置1. 而其它位置都浪费了。

如果使用哈希表,虽然不会有大量空间浪费,但要考虑冲突问题。


Read full article from Cracking the coding interview--Q19.11


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts