leetcode面试题26 方格取数



leetcode面试题26 方格取数

初阶:有一个n*m的矩阵,需要从坐上角(1,1)走到右下角(n,m),只能向右和向下走。矩阵中的每个方格有一个非负整数,问从左上角到右下角的所有路径中,数字之和最大的路径是哪一条。


进阶:如果可以从左上角往下走k次,每个方格中的数被取走之后第二次经过则不再累加数值。请问走k次最多能取到的数值之和是多少。



解答

答:


初阶:采用动态规划算法。F[i][j]代表从左上角到(i,j)这个位置的最大路径和。有F[i][j] = max{F[i-1][j], F[i][j-1]} + A[i][j]。其中A[i][j]为(i,j)这个格子中的数值。答案为F[n][m]。时间复杂度O(n*m)。


进阶:采用网络流算法。将每个格子拆为两个点――入点和出点,入点到出点之间的流量限制为1,费用为格子的数值。所有出点均向它右方和下方的入点连一条流量限制为无穷大,费用为0的边。连接源点到左上角入点,流量设为k,费用设为0。设右下角的出点为汇点。从源点到汇点做一次最小费用最大流算法,即可得到答案。


面试官角度:


初阶问题是经常会被问到的问题。也是必须要掌握的动态规划算法问题之一。类似的题目有数字三角形。进阶问题一般不会被问到,在北美的面试中基本没有被问到过。再国内的面试中,有一些公司很牛但招聘名额很少时会问到这个题目,笔者曾经在参加面试时被问到的这个题。一般来说网络流算法不会在面试中被问到,所以读者不用担心也不必准备此类问题。只需要掌握初阶问题这种最基本的动态规划算法即可。


Read full article from leetcode面试题26 方格取数


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts