(Leet Code) Minimax 系列问题题解 | PY的个人博客



(Leet Code) Minimax 系列问题题解 | PY的个人博客

何为Mnimax,它是用在决策轮、博弈论和概率论中的一条决策规则。它被用来最小化最坏情况下的可能损失(wiki)。

上面的概念描述可能看起来令人费解,我们可以使用一个抽象的游戏来理解它:

现在有n堆金子排列成一条直线,每堆都有其对应的价值p[i]。现在两个人来分金子,每次只能从余下的金子中取一堆,并且这一堆只能位于最左边或最右边。现在两人按照这个规则交替取金子,并且两个人都经量想让自己最终获得更多的金子。

上面这个游戏其实是一个Zero-sum game,在zero-sum游戏中,游戏参与方各自的收益是冲突的,某个参与者收益的增加必然导致其他参与者收益的减少。所有游戏参与者的收益和损失的和永远为一个固定的值(通常可以看做是0)。

那么这个游戏和Minimax有什么关系了,我们这样来分析,假设参与分金子的两个人是A和B。令P[i][j]表示当还剩下[i-j]这几堆金子时,第一个取的人能获得的最大收益。sum[i][j]表示[i-j]金子的价值总和。可以得到如下的公式:


Read full article from (Leet Code) Minimax 系列问题题解 | PY的个人博客


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts