【新提醒】上岸撒花and在职跳槽时间线【一亩三分地求职版】 -
18年6月仓促中入职湾区某养老院,进去才发现里面的developer都是40+yr,relaxed,no ambition,mediocore and everyone is happily lowballed. 第一天就决定跳槽。
18年12月面狗家,再次被fail,决心认真
刷题。
19年1月16号L家recruiter intro call. 申请ML/Data miniing track
19年2月20号电面,经典unfair coin sampling+ML基础问题。
19年2月26号postive feedback, move forward to oniste.
. check 1point3acres for more. 19年4月3号onsite,6 rounds:
1.Host manager round:Previous ML projects+BQ. 上天眷顾,楼主刚好有一篇nature communication的ML paper三天前accepted,拿来刚好用来impress host manager. 后来事实证明,host manager这一轮是所有面试中最最最重要的一轮。因为之前没有任何在大厂工作的经验,加上当时的公司非常偏silicon,所以HC在review的时候有非常多的concern(尽管所有6轮面试都基本上很顺利的crack了)。最后Host manager最后strongly vouch for楼主, 得以最终顺利过关。
2.Coding轮,一道string replacement,一道max stack。一位香港大哥,一位同学校的学弟shadow。没记错的话我应该还TA过他....
3.吃饭。白人小哥和同学校学弟again.....闲聊扯淡顺利结束。
. check 1point3acres for more. 4.Data coding. 法国小哥, MIT PhD at Pure math,各种概率统计问题, 时间有点久我已经忘了具体问了什么了,反正就是各种推导证明,完全无coding
5. ML System Design, 国人姐姐加国人小哥shadow。基本就是google wide+deep model的推荐系统
6. Data mining. 香港小哥,Bayesian Optimization, Bayesian Inference, Gaussian Process Regression, SVM, Generalized Linear Model, exponential family, Logistic Regression, Tree model and emsembles. CNN, RNN, DNN. How to tune each of them, regularization, why it works, lagrange multiplier, etc.....非常杂非常多。建议面ML的小伙伴,一定要把所有常见的model全部都手推一遍。特别是有probabilistic interpretation的,一定要知道是如何推导的。
所有面试的提问环节,最好根据每位面试官的team不同,提出不同的specific的问题。听起来很难,但是实际上稍微跟一跟这些大厂在KDD,NIPS,ICML这几年的pape, talk以及
linkedin的engineering blog仔细翻一遍,想几个比较relevant的问题,就很容易impress面试官。比如MIT小哥做optimization, 刚好KDD18 linkedin有一篇multi-objective optimization的paper用gaussian process regression的,针对自己没看明白的几个部分随便问问,小哥开心的不得了。host manager做search的,KDD16/17 Linkedin做了deep personalized search的tutorial然后host manager之前也有search quality的talk,看一遍把主要idea和问题熟记在心,交流起来顺畅无比。总结下来就是要真的跟一跟ML这个领域最新的progress才真的能应付的得心应手。
19年4月15号过HC开始team match
19年4月19号match到三个team
19年4月23号三轮team matching chat
-baidu 1point3acresRead full article from 【新提醒】上岸撒花and在职跳槽时间线【一亩三分地求职版】 -