图的匹配问题与最大流问题(三)――最大流问题Ford-Fulkerson方法Java实现 - smartxxyx的专栏 - 博客频道 - CSDN.NET



上篇文章主要介绍了Ford-Fulkerson方法的理论基础,本篇给出一种Java的实现。

先借助伪代码熟悉下流程

FORD-FULKERSON(G,t,s)

1 for each edge(u,v)属于E(G)

2     do f[u,v]=0

3          f[v,u]=0

4 while there exists a path p from s to t in the residual network Gf

5       do cf(p)=min{cf(u,v):(u,v)is in p}

6        for each edge (u,v) in p

7              do f[u,v]=f[u,v]+cf(p)

8                    f[v,u]=-f[u,v]

如果在4行中用广度优先搜索来实现对增广路径p的计算,即找到s到t的最短增广路径,能够改进FORD-FULERSON的界,这就是Ford-Fulkerson方法的Edmonds-Karp算法

证明该算法的运行时间为O(VE*E),易知,对流增加的全部次数上界为O(VE),每次迭代时间O(E)


Read full article from 图的匹配问题与最大流问题(三)――最大流问题Ford-Fulkerson方法Java实现 - smartxxyx的专栏 - 博客频道 - CSDN.NET


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts