Google File System Architecture - HowStuffWorks



Google File System Architecture - HowStuffWorks

Google File System Architecture

Google organized the GFS into clusters of computers. A cluster is simply a network of computers. Each cluster might contain hundreds or even thousands of machines. Within GFS clusters there are three kinds of entities: clients, master servers and chunkservers.

In the world of GFS, the term "client" refers to any entity that makes a file request. Requests can range from retrieving and manipulating existing files to creating new files on the system. Clients can be other computers or computer applications. You can think of clients as the customers of the GFS.

The master server acts as the coordinator for the cluster. The master's duties include maintaining an operation log, which keeps track of the activities of the master's cluster. The operation log helps keep service interruptions to a minimum -- if the master server crashes, a replacement server that has monitored the operation log can take its place. The master server also keeps track of metadata, which is the information that describes chunks. The metadata tells the master server to which files the chunks belong and where they fit within the overall file. Upon startup, the master polls all the chunkservers in its cluster. The chunkservers respond by telling the master server the contents of their inventories. From that moment on, the master server keeps track of the location of chunks within the cluster.

There's only one active master server per cluster at any one time (though each cluster has multiple copies of the master server in case of a hardware failure). That might sound like a good recipe for a bottleneck -- after all, if there's only one machine coordinating a cluster of thousands of computers, wouldn't that cause data traffic jams? The GFS gets around this sticky situation by keeping the messages the master server sends and receives very small. The master server doesn't actually handle file data at all. It leaves that up to the chunkservers.

Chunkservers are the workhorses of the GFS. They're responsible for storing the 64-MB file chunks. The chunkservers don't send chunks to the master server. Instead, they send requested chunks directly to the client. The GFS copies every chunk multiple times and stores it on different chunkservers. Each copy is called a replica. By default, the GFS makes three replicas per chunk, but users can change the setting and make more or fewer replicas if desired.

How do these elements work together during a routine process? Find out in the next section.


Read full article from Google File System Architecture - HowStuffWorks


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts