Cache-oblivious data structures - Developing for Developers - Site Home - MSDN Blogs



Cache-oblivious data structures - Developing for Developers - Site Home - MSDN Blogs

In most data structure and algorithms classes, the model used for basic analysis is the traditional RAM model: we assume that we have a large, random-access array of memory, and count the number of simple reads/writes needed to perform the algorithm. For example, selection sort takes about n(n-1)/2 reads and 2n writes to sort an array of n numbers. This model was relatively accurate up through the 1980s, when CPUs were slow enough and RAM small enough that reading and writing the RAM directly didn't create a significant bottleneck. Nowadays, however, typical desktop CPUs possess deep cache hierarchies - at least a sizable L1 and L2 cache - to prevent runtime from being dominated by RAM accesses. Data structures and algorithms that efficiently exploit the cache can perform dramatically more quickly than those that don't, and our analysis needs to take this into account.


Read full article from Cache-oblivious data structures - Developing for Developers - Site Home - MSDN Blogs


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts