分布式存储复制技术:链式复制 | 机会永远留给有准备的人



分布式存储复制技术:链式复制 | 机会永远留给有准备的人

分布式系统中,强一致性通常被认为和高可用、高吞吐不相容,为了实现系统的高可用、高吞吐必须要牺牲强一致性。比如在亚马逊的Dynamo提供最终一致性,但是这样其实给开发者带来很多问题[0]

写入的数据在后续的读操作中不能被读取到

写入的数据有可能在后续的读操作中获取到,但是读到后下一次又读不到

Dynamo不保证一定能够读到写入的数据,将复杂的冲突合并工作留到了客户端;由于Dynamo的冲突合并过于复杂,在后来的系统Amazon S3使用'Last-write wins'来解决冲突,但是仍然不能完全解决上面提到的问题。

Google的GFS在写成功时是一致的,写失败时是不一致的,因此GFS的Record Append提供的是至少成功写一次的语义,由客户端读的时候自己来解决一致性问题。

这样会带来一致性问题[1],比如: 数据在某个chunk副本中重复出现了多次,但是在其他副本中可能没有。在记录级别上,读到的记录顺序依赖于刚好读取到哪个chunk副本。

而开发者更加希望系统能够提供强一致的保证,由分布式系统提供强一致性的保证,这样可以提高开发效率。


Read full article from 分布式存储复制技术:链式复制 | 机会永远留给有准备的人


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts