Yelp是如何用数据驱动搜索过滤器的?



Yelp是如何用数据驱动搜索过滤器的?

在美国最大的点评网站Yelp上,许多用户都会使用高级搜索过滤器准确地查找某个地方。像"价格"、"距离"、"评级"这样的过滤器很容易使用,但像"户外座位"或"现场音乐"这种更专门的过滤器就有些难用了。因此,他们需要寻找一种方法,在不影响用户体验的情况下,使用户更方便地使用高级过滤器。Yelp数据挖掘工程师Ray M. G.近日撰文介绍了他们如何使用数据驱动搜索过滤器。

在设计新的过滤器之前,他们需要通过挖掘数据更好地理解用户如何使用过滤器。他们发现,用户选择的过滤器很大程度上取决于他们使用的查询词。而且,大部分用户都只使用一个过滤器。他们由此得出,他们需要一种简单的设计,只提供少数几个同查询词相关的过滤器。以下是设计变化前后的界面:


Read full article from Yelp是如何用数据驱动搜索过滤器的?


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts