【新提醒】马克2016找工季总结,拿到g和f,从了facebook【一亩三分地论坛求职版】 -



【新提醒】马克2016找工季总结,拿到g和f,从了facebook【一亩三分地论坛求职版】 -

很多身边的朋友问我算法怎么准备,我只能回答一个字:"直接刷题"。楼主之前听过xx算法的高级算法课,感觉课还不如附送的ladder管用,(ladder是真好用)。然后又听了各种各样的算法课,(13年夏天啃掉了算法导论,听了mit的算法,算是打了比较扎实的基础),还是推荐算法挺princeton大爷在coursera公开课,这门课深入浅出,基本lz答的80%的follow up都是从这学到的。
至于刷题,楼主刚毕业找工作的时候刷了100多道,以medium为主,工作半年后每天晚上刷2道hard作为思维训练,然后这次找工作刷了300道,一些典型的可以用多种解法的题用所有方法刷一遍,大概不到500次不一样的提交吧。我的经验就是,如果平时没事做,就去刷hard,对找问题解决问题,写更整洁的代码都有很大帮助,如果是着急面试,就多刷medium,把基本功练熟,面试基本不会考到hard的原题,就算考到了也未必能考到你准备的那些,还是要把基本功练扎实,比如写个bfs dfs unionfind或者sweep line可以不过大脑。然后就是不一定要会写,但是尽量多了解些高级的数据结构,这样follow up不至于没的说,比如segment tree,binary indexed tree, tenary search tree, Boyer-Moore, Manacher等等,可以上princeton大爷的课,也可以去geeksforgeeks或者topcoder看文章
(再次推荐下princeton大爷的课,不光是视频,他的书有电子版, 里面的专门各种数据结构和算法的源码(http://algs4.cs.princeton.edu/code),比如谷歌一道原题是如何设计迷宫,就可以直接从这里看到代码
总的说,hard题和高级算法结构需要总结,是一种长期收益;medium和模板是熟能生巧,想拿起来随时可以拿起来,是一种短期收益。面经是针对性很强的东西,是一种很有用的功利性的收益,如何取舍看大家各自处于什么阶段-baidu 1point3acres

Read full article from 【新提醒】马克2016找工季总结,拿到g和f,从了facebook【一亩三分地论坛求职版】 -


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts