Diagonal Sum of a Binary Tree - GeeksforGeeks



Diagonal Sum of a Binary Tree - GeeksforGeeks

Diagonal Sum of a Binary Tree Consider lines of slope -1 passing between nodes (dotted lines in below diagram). Diagonal sum in a binary tree is sum of all node's data lying between these lines. Given a Binary Tree, print all diagonal sums. For the following input tree, output should be 9, 19, 42. 9 is sum of 1, 3 and 5. 19 is sum of 2, 6, 4 and 7. 42 is sum of 9, 10, 11 and 12. We strongly recommend to minimize your browser and try this yourself first Algorithm: The idea is to keep track of vertical distance from top diagonal passing through root. We increment the vertical distance we go down to next diagonal. 1. Add root with vertical distance as 0 to the queue. 2. Process the sum of all right child and right of right child and so on. 3. Add left child current node into the queue for later processing. The vertical distance of left child is vertical distance of current node plus 1. 4. Keep doing 2nd, 3rd and 4th step till the queue is empty.

Read full article from Diagonal Sum of a Binary Tree - GeeksforGeeks


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts