Near Real Time Searching - Apache Solr Reference Guide - Apache Software Foundation



Near Real Time Searching - Apache Solr Reference Guide - Apache Software Foundation

A commit operation makes index changes visible to new search requests. A hard commit uses the transaction log to get the id of the latest document changes, and also calls fsync on the index files to ensure they have been flushed to stable storage and no data loss will result from a power failure.

A soft commit is much faster since it only makes index changes visible and does not fsync index files or write a new index descriptor. If the JVM crashes or there is a loss of power, changes that occurred after the last hard commit will be lost. Search collections that have NRT requirements (that want index changes to be quickly visible to searches) will want to soft commit often but hard commit less frequently. A softCommit may be "less expensive" in terms of time, but not free, since it can slow throughput.

An optimize is like a hard commit except that it forces all of the index segments to be merged into a single segment first. Depending on the use, this operation should be performed infrequently (e.g., nightly), if at all, since it involves reading and re-writing the entire index. Segments are normally merged over time anyway (as determined by the merge policy), and optimize just forces these merges to occur immediately.


Read full article from Near Real Time Searching - Apache Solr Reference Guide - Apache Software Foundation


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts