The JVM Immune System: Debugging Distributed Servers at Scale | Takipi Blog



The JVM Immune System: Debugging Distributed Servers at Scale | Takipi Blog

The JVM Immune System: Debugging Distributed Servers at Scale By Alex Zhitnitsky  —  October 29, 2015 —  Leave a comment Today more than ever, speed plays a larger role in the software development lifecycle. We see R&D teams who want to push code faster to production environments with rising complexity, and this amplifies a vulnerability that must be addressed. Those few hours after a new deployment set the tone for its success. Every once in a while, things go wrong, no matter how strict your tests are. When your code is out in production and it meets the real-world architecture and scale of your system, with real data flowing through the application, things can go south pretty quickly. In order to be resilient and stay on top of things, a strategy needs to be implemented that allows you to:

Read full article from The JVM Immune System: Debugging Distributed Servers at Scale | Takipi Blog


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts