[Design] Big Data - Fuzzy Search url (Bloom Filter) - Shuatiblog.com
给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?
Bloom Filter
自从Burton Bloom在70年代提出Bloom Filter之后,Bloom Filter就被广泛用于拼写检查,数据库系统中。。。可以实现数据字典,进行数据的判重,或者集合求交集
基本原理及要点
An empty Bloom filter is a bit array of m bits, all set to 0. There must also be k different hash functions defined, each of which maps or hashes some set element to one of the m array positions with a uniform random distribution.
很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。
所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。
Error rate
m: length of BF array (in bits) n: number of input elements k: number of hash functions
A Bloom filter with 1% error and an optimal value of k, in contrast, requires only about 9.6 bits per element (means m = 9.6 x n).
Usage
Bloom Filter可以用来实现数据字典,进行数据的判重,或者集合求交集.
Solution
Of course we can always use 【分治+trie树/hash+小顶堆】 standard solution, but for Fuzzy search, BF is the best.
4G = 232 大概是40亿 x 8大概是340亿bit,n = 50亿,如果按出错率0.01算需要的大概是480亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。
Read full article from [Design] Big Data - Fuzzy Search url (Bloom Filter) - Shuatiblog.com
No comments:
Post a Comment