生成伪随机数的算法�C线性同余法 - 不知道要什么,便什么都想要,最后什么都要不到 - 博客频道 - CSDN.NET



生成伪随机数的算法�C线性同余法 - 不知道要什么,便什么都想要,最后什么都要不到 - 博客频道 - CSDN.NET

同余的概念是这样描述的:

设m是一个给定的正整数,如果两个整数a,b用m除,所得的余数相同,则称a,b对模m同余。

所谓线性同余法(又叫混合同余法),就是这样的一个公式:X[i+1]=(A*X[i]+C) mod M;

经前人研究表明,在M=2^q的条件下,参数A,C,X[0]按如下选取,周期较大,概率统计特性好:

A=2^b+1=2^(log2(M)/2)+1=2^log2(sqrt(M))+1=sqrt(M)+1;b取q/2 附近的数

C=(1/2+sqrt(3))*M

X[0]为任意非负数

M , 模数         0 < M
A, 乘数         0 <= A<M
C, 增量         0 <=C<M
Xi,开始值        0<=Xi<M

它的一个致命的弱点,那就是随机数的生成在某一周期内成线性增长的趋势,显然,在大多数场合,这种极富"规律"型的随机数是不应当使用的。

 

同余序列总是进入一个循环,这是一个事实,它最终必定在N个数之间无休止的重复循环。
使用该方法产生的伪随机数能不能近似真正的随机效果,跟四个整数的设置相关:
1.         序列的开始值,一般取正整数。
2.         m:一个同余序列的周期不可能多于m个元素,所以,为了达到预期的随机效果,一般我们希望这个值稍稍大一点。在大多数情况下,当m = 2e(e表示计算机的字大小)时,在计算机中得到的随机效果就比较令人满意了。而且这样对于随机数生成速度也是比较合理的。
3.         a:当a=1的时候,Xn=(X0+nc)mod m ,它不具有随机序列的特性;而当a=0的时候甚至更糟糕。因此,为实用起见,选择2 <= a<m比较合理。
4.         c:当c=0时,数的生成过程比c!=0的时候要稍微快些,它的限制缩短了这个序列的周期长度,但是也仍然有可能得到一个相当长的周期。当c=0时被称为乘同余法,c!=0称为混合同余法。为了一般性,我建议选择采用混合同余法。
由m,a,c和X0所定义的线形同余序列得到最大的周期长度m的条件如下:


Read full article from 生成伪随机数的算法�C线性同余法 - 不知道要什么,便什么都想要,最后什么都要不到 - 博客频道 - CSDN.NET


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts