董的博客 >> 如何高效的阅读hadoop源代码?



董的博客 » 如何高效的阅读hadoop源代码?

个人谈谈阅读hadoop源代码的经验。

首先,不得不说,hadoop发展到现在这个阶段,代码已经变得非常庞大臃肿,如果你直接阅读最新版本的源代码,难度比较大,需要足够的耐心和时间,所以,如果你觉得认真一次,认真阅读一次hadoop源代码,一定要有足够的心理准备和时间预期。

其次,需要注意,阅读Hadoop源代码的效率,因人而异,如果你有足够的分布式系统知识储备,看过类似的系统,则能够很快地读它的源代码进行通读,并快速切入你最关注的局部细节,比如你之前看过某个分布式数据库的源代码,对分布式系统的网络通信模块,调度模块等有一定了解,这对阅读hadoop源代码有极大帮助;如果你是一个初学者,对hadoop一无所知,只了解一些java语法,那阅读hadoop源代码是极具挑战的一件事情,尤其是从无到开始入门的过程,是极度煎熬和困惑的,这时候需要你在阅读代码过程中,不断补充缺乏的相关知识(比如RPC,NIO,设计模式等),循序渐进,直到入门。

接下来进入主题,说一下阅读源代码的个人经验。由于我也是从无到入门,再到修改源代码,逐步过渡的,所以,对于很多人而言,具有借鉴意义。

============
第一个阶段:学习hadoop基本使用和基本原理,从应用角度对hadoop进行了解和学习

这是第一个阶段,你开始尝试使用hadoop,从应用层面,对hadoop有一定了解,比如你可以使用hadoop shell对hdfs进行操作,使用hdfs API编写一些程序上传,下载文件;使用MapReduce API编写一个数据处理程序。一旦你对hadoop的基本使用方法比较熟悉了,接下来可以尝试了解它的内部原理,注意,不需要通过阅读源代码了解内部原理,只需看一些博客,书籍,比如《Hadoop权威指南》,对于HDFS而言,你应该知道它的基本架构以及各个模块的功能;对于MapReduce而言,你应该知道其具体的工作流程,知道partition,shuffle,sort等工作原理,可以自己在纸上完整个画完mapreduce的流程,越详细越好。

在这个阶段,建议你多看一些知名博客,多读读《hadoop权威指南》(可选择性看相关的几章)。如果你有实际项目驱动,那是再好不过了,理论联系实际是最好的hadoop学习方法;如果你没有项目驱动,那建议你不要自己一个人闷头学,多跟别人交流,多主动给别人讲讲,最好的学习方式还是“讲给别人听”。

============
第二个阶段:从无到入门,开始阅读hadoop源代码

这个阶段是最困苦和漫长的,尤其对于那些没有任何分布式经验的人。 很多人这个阶段没有走完,就放弃了,最后停留在hadoop应用层面。
这个阶段,第一件要做的事情是,选择一个hadoop组件。如果你对分布式存储感兴趣,那么你可以选择HDFS,如果你读分布式计算感兴趣,你可以选择MapReduce,如果你对资源管理系统感兴趣,你可以选择YARN。

选择好系统后,接下来的经历是最困苦的。当你把hadoop源代码导入eclipse或intellij idea,沏上一杯茶,开始准备优哉游哉地看hadoop源代码时,你懵逼了:你展开那数不尽的package和class,觉得无从下手,好不容易找到了入口点,然后你屁颠屁颠地通过eclipse的查找引用功能,顺着类的调用关系一层层找下去,最后迷失在了代码的海洋中,如同你在不尽的压栈,最后栈溢出了,你忘记在最初的位置。很多人经历过上面的过程,最后没有顺利逃出来,而放弃。

如果你正在经历这个过程,我的经验如下:首先,你要摸清hadoop的代码模块,知道client,master,slave各自对应的模块(hadoop中核心系统都是master/slave架构,非常类似),并在阅读源代码过程中,时刻谨记你当前阅读的代码属于哪一个模块,会在哪个组件中执行;之后你需要摸清各个组件的交互协议,也就是分布式中的RPC,这是hadoop自己实现的,你需要对hadoop RPC的使用方式有所了解,然后看各模块间的RPC protocol,到此,你把握了系统的骨架,这是接下来阅读源代码的基础;接着,你要选择一个模块开始阅读,我一般会选择Client,这个模块相对简单些,会给自己增加信心,为了在阅读代码过程中,不至于迷失自己,建议在纸上画出类的调用关系,边看边画,我记得我阅读hadoop源代码时,花了一叠纸。注意,看源代码过程中,很容易烦躁不安,建议经常起来走走,不要把自己逼得太紧。

在这个阶段,建议大家多看一些源代码分析博客和书籍,比如《Hadoop技术内幕》系列丛书(轩相关网站:Hadoop技术内幕)就是最好的参考资料。借助这些博客和书籍,你可以在前人的帮助下,更快地学习hadoop源代码,节省大量时间,注意,目前博客和书籍很多,建议大家广泛收集资料,找出最适合自己的参考资料。

这个阶段最终达到的目的,是对hadoop源代码整体架构和局部的很多细节,有了一定的了解。比如你知道MapReduce Scheduler是怎样实现的,MapReduce shuffle过程中,map端做了哪些事情,reduce端做了哪些事情,是如何实现的,等等。这个阶段完成后,当你遇到问题或者困惑点时,可以迅速地在Hadoop源代码中定位相关的类和具体的函数,通过阅读源代码解决问题,这时候,hadoop源代码变成了你解决问题的参考书。

============
第三个阶段:根据需求,修改源代码。

这个阶段,是验证你阅读源代码成效的时候。你根据leader给你的需求,修改相关代码完成功能模块的开发。在修改源代码过程中,你发现之前阅读源代码仍过于粗糙,这时候你再进一步深入阅读相关代码,弥补第二个阶段中薄弱的部分。当然,很多人不需要经历第三个阶段,仅仅第二阶段就够了:一来能够通过阅读代码解决自己长久以来的技术困惑,满足自己的好奇心,二来从根源上解决解决自己遇到的各种问题。 这个阶段,没有太多的参考书籍或者博客,多跟周围的同事交流,通过代码review和测试,证明自己的正确性。

============
阅读hadoop源代码的目的不一定非是工作的需要,你可以把他看成一种修养,通过阅读hadoop源代码,加深自己对分布式系统的理解,培养自己踏实做事的心态。


Read full article from 董的博客 » 如何高效的阅读hadoop源代码?


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts