Minimum number of swaps required for arranging pairs adjacent to each other - GeeksforGeeks



Minimum number of swaps required for arranging pairs adjacent to each other - GeeksforGeeks

Minimum number of swaps required for arranging pairs adjacent to each other There are n-pairs and therefore 2n people. everyone has one unique number ranging from 1 to 2n. All these 2n persons are arranged in random fashion in an Array of size 2n. We are also given who is partner of whom. Find the minimum number of swaps required to arrange these pairs such that all pairs become adjacent to each other. Example: Input: n = 3 pairs[] = {1->3, 2->6, 4->5} // 1 is partner of 3 and so on arr[] = {3, 5, 6, 4, 1, 2} Output: 2 We can get {3, 1, 5, 4, 6, 2} by swapping 5 & 6, and 6 & 1 We strongly recommend you to minimize your browser and try this yourself first. The idea is to start from first and second elements and recur for remaining elements. Below are detailed steps/ 1) If first and second elements are pair, then simply recur for remaining n-1 pairs and return the value returned by recursive call. 2) If first and second are NOT pair, then there are two ways to arrange.

Read full article from Minimum number of swaps required for arranging pairs adjacent to each other - GeeksforGeeks


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts