Java问题排查工具箱 – hellojavacases微信公众号网站



Java问题排查工具箱 – hellojavacases微信公众号网站

问题排查除了最重要的解决思路和逻辑推导能力外,工具也是不可缺少的一部分,一个好用的工具可以事半功倍,甚至在某些情况下会因为没有相应的工具而压根就没法继续进行下去,这篇文章就来讲讲在排查Java问题时通常要用到的一些工具(ps:这种文章值得收藏,看一遍其实很容易忘)。

日志相关工具
查问题的时候会非常依赖日志,因此看日志的相关工具非常重要,通常的话掌握好tail,find,fgrep,awk这几个常用工具的方法就可以,说到这个就必须说关键的异常和信息日志输出是多么的重要(看过太多异常的随意处理,例如很典型的是应用自己的ServletContextListener实现,很多的Listener实现都会变成往外抛RuntimeException,然后直接导致tomcat退出,而tomcat这个时候也不会输出这个异常信息,这种时候要查原因真的是让人很郁闷,尽管也有办法)。
日志的标准化也非常重要,日志的标准化一方面方便像我这种要查各种系统问题的人,不标准的话连日志在哪都找不到;另一方面对于分布式系统而言,如果标准化的话是很容易做日志tracing的,对问题定位会有很大帮助。


Read full article from Java问题排查工具箱 – hellojavacases微信公众号网站


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts