背包之01背包、完全背包、多重背包详解 - Tanky Woo - 博客园
首先说下动态规划,动态规划这东西就和递归一样,只能找局部关系,若想全部列出来,是很难的,比如汉诺塔。你可以说先把除最后一层的其他所有层都移动到2,再把最后一层移动到3,最后再把其余的从2移动到3,这是一个直观的关系,但是想列举出来是很难的,也许当层数n=3时还可以模拟下,再大一些就不可能了,所以,诸如递归,动态规划之类的,不能细想,只能找局部关系。
1.汉诺塔图片
(引至杭电课件:DP最关键的就是状态,在DP时用到的数组时,也就是存储的每个状态的最优值,也就是记忆化搜索)
要了解背包,首先得清楚动态规划:
动态规划算法可分解成从先到后的4个步骤:
1. 描述一个最优解的结构;
2. 递归地定义最优解的值;
3. 以"自底向上"的方式计算最优解的值;
4. 从已计算的信息中构建出最优解的路径。
其中步骤1~3是动态规划求解问题的基础。如果题目只要求最优解的值,则步骤4可以省略。
背包的基本模型就是给你一个容量为V的背包
在一定的限制条件下放进最多(最少?)价值的东西
当前状态→ 以前状态
看了dd大牛的《背包九讲》(点击下载),迷糊中带着一丝清醒,这里我也总结下01背包,完全背包,多重背包这三者的使用和区别,部分会引用dd大牛的《背包九讲》,如果有错,欢迎指出。
(www.wutianqi.com留言即可)
首先我们把三种情况放在一起来看:
01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
比较三个题目,会发现不同点在于每种背包的数量,01背包是每种只有一件,完全背包是每种无限件,而多重背包是每种有限件。
――――――――――――――――――――――――――――――――――――――――――――――――――――――――――�C
先来分析01背包:
01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
把这个过程理解下:在前i件物品放进容量v的背包时,
它有两种情况:
第一种是第i件不放进去,这时所得价值为:f[i-1][v]
第二种是第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i]
(第二种是什么意思?就是如果第i件放进去,那么在容量v-c[i]里就要放进前i-1件物品)
最后比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种。
(这是基础,要理解!)
这里是用二位数组存储的,可以把空间优化,用一位数组存储。
用f[0..v]表示,f[v]表示把前i件物品放入容量为v的背包里得到的价值。把i从1~n(n件)循环后,最后f[v]表示所求最大值。
*这里f[v]就相当于二位数组的f[i][v]。那么,如何得到f[i-1][v]和f[i-1][v-c[i]]+w[i]?(重点!思考)
首先要知道,我们是通过i从1到n的循环来依次表示前i件物品存入的状态。即:for i=1..N
现在思考如何能在是f[v]表示当前状态是容量为v的背包所得价值,而又使f[v]和f[v-c[i]]+w[i]标签前一状态的
Read full article from 背包之01背包、完全背包、多重背包详解 - Tanky Woo - 博客园
No comments:
Post a Comment