Sketching data structures -- LK blog



Sketching data structures — LK blog

2. Count-Min sketch

The Count-Min (CM) sketch is less known than the Bloom filter, but it is somewhat similar (especially to the counting variants of the Bloom filter). The problem here is to store a numerical value associated with each element, say the number of occurrences of the element in a stream (for example when counting accesses from different IP addresses to a server). Surprisingly, this can be done using less space than the number of elements, with the trade-off that the result can be slightly off sometimes, but mostly on the small values. Again, the parameters of the data structure can be chosen such as to obtain a desired accuracy.

CM works as follows: we have k different hash functions and k different tables which are indexed by the outputs of these functions (note that the Bloom filter can be implemented in this way as well). The fields in the tables are now integer values. Initially we have all fields set to 0 (all unseen elements have count 0). When we increase the count of an element, we increment all the corresponding k fields in the different tables (given by the hash values of the element). If a decrease operation is allowed (which makes things more difficult), we similarly subtract a value from all k elements.

To obtain the count of an element, we take the minimum of the k fields that correspond to that element (as given by the hashes). This makes intuitive sense. Out of the k values, probably some have been incremented on other elements also (if there were collisions on the hash values). However, if not all k fields have been returned by the hash functions on other elements, the minimum will give the correct value. See illustration for an example on counting hits from IP addresses:


Read full article from Sketching data structures — LK blog


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts