Find zeroes to be flipped so that number of consecutive 1's is maximized - GeeksforGeeks



Find zeroes to be flipped so that number of consecutive 1's is maximized - GeeksforGeeks

Find zeroes to be flipped so that number of consecutive 1's is maximized

Given a binary array and an integer m, find the position of zeroes flipping which creates maximum number of consecutive 1s in array.

Examples:

Input:   arr[] = {1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1}           m = 2  Output:  5 7  We are allowed to flip maximum 2 zeroes. If we flip  arr[5] and arr[7], we get 8 consecutive 1's which is  maximum possible under given constraints     Input:   arr[] = {1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1}           m = 1  Output:  7  We are allowed to flip maximum 1 zero. If we flip   arr[7], we get 4 consecutive 1's which is maximum   possible under given constraints.    Input:   arr[] = {0, 0, 0, 1}           m = 4  Output:  0 1 2  Since m is more than number of zeroes, we can flip  all zeroes.  

Source: http://www.careercup.com/question?id=5106425965576192

We strongly recommend you to minimize your browser and try this yourself first.

A Simple Solution is to consider every subarray by running two loops. For every subarray, count number of zeroes in it. Return the maximum size subarray with m or less zeroes. Time Complexity of this solution is O(n2).

A Better Solution is to use auxiliary space to solve the problem in O(n) time.

For all positions of 0's calculate left[] and right[] which defines the number of consecutive 1's to the left of i and right of i respectively.

For example, for arr[] = {1, 1, 0, 1, 1, 0, 0, 1, 1, 1} and m = 1, left[2] = 2 and right[2] = 2, left[5] = 2 and right[5] = 0, left[6] = 6 and right[6] = 3.

left[] and right[] can be filled in O(n) time by traversing array once and keeping track of last seen 1 and last seen 0. While filling left[] and right[], we also store indexes of all zeroes in a third array say zeroes[]. For above example, this third array stores {2, 5, 6}

Now traverse zeroes[] and for all consecutive m entries in this array, compute the sum of 1s that can be produced. This step can be done in O(n) using left[] and right[].

An Efficient Solution can solve the problem in O(n) time and O(1) space. The idea is to use Sliding Window for the given array. The solution is taken from here.
Let us use a window covering from index wL to index wR. Let the number of zeros inside the window be zeroCount. We maintain the window with at most m zeros inside.

The main steps are:
– While zeroCount is no more than m: expand the window to the right (wR++) and update the count zeroCount.
– While zeroCount exceeds m, shrink the window from left (wL++), update zeroCount;
– Update the widest window along the way. The positions of output zeros are inside the best window.


Read full article from Find zeroes to be flipped so that number of consecutive 1's is maximized - GeeksforGeeks


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts