几种求解PI的概率算法的探究和对比 ・ Sighingnow



几种求解PI的概率算法的探究和对比 ・ Sighingnow

几种求解PI的概率算法的探究和对比

 Published On June 01, 2015

$\pi$是一个重要的随机数,在数学研究中占有重要地位。求解PI的数值值也一直是数学研究的经典问题之一。本文将主要探讨几种求解PI的概率算法的原理和实现,并对比其效率和准确度。

一、Mathematica中的$\pi$

我们发现,在Mathematica中可以使用$\pi$来做符号运算,很多运算都涉及到非常高深的数学知识,使用N[Pi, n]函数也能够求得$\pi$的前n位数值解。那么为什么Mathematica能够以如此高的精度求解$\pi$的值呢?

通过查阅Mathematica的文档,得知,Mathematica求解$\pi$使用的是Chudnovsky公式,因其具有很好的收敛速度而在数值计算中被广泛采用。Chudnovsky 算法的表述如下:

$$ \frac{1}{\pi} = 12\sum_{k=0}{\infty} \frac{(-1)k(6k)! (163\cdot 3344418k + 13591409)}{(3k)!(k!)3(6403203){k+1/2}} $$

根据这个公式,可以编写如下Mathematica代码:


Read full article from 几种求解PI的概率算法的探究和对比 ・ Sighingnow


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts