游戏面试题-武器升级 - tenos - 博客园



游戏面试题-武器升级 - tenos - 博客园

游戏面试题-武器升级

一把武器,最低是1级,最高可以升到9级,每次升级成功率30%,失败率70%。失败会退一级,在1级的时候如果失败则仍然为1级。问:该武器从1级升到9级的所需次数的期望?

 

记从第k-1级升到第k级所需次数的期望是E_k。

 

假设武器处于k级,那么从k级升到k+1所需次数的期望E_(k+1) 如何求呢? 分为两种情况:

(1)、从k到k+1第一次成功,概率是0.3,所需次数是1                        本文地址

(2)、第一次不成功,退回到了k-1级,概率是0.7,这时需要先从k-1上升到k(需要的次数期望是E_k),再从k上升到k+1(需要的次数期望是E_(k+1)),总的所需次数是 E_k + E_(k+1) + 1。

 

根据期望的计算公式可以得到: E_(k+1) = 0.3*1 + 0.7*(E_k + E_(k+1) + 1)

上式化简为:0.3E_(k+1) = 0.7E_k + 1

作简单变换可得:0.3(E_(k+1) + 2.5) = 0.7(E_k + 2.5)

很明显E_k+2.5 是等比数列,可以很容易求得E_k的通项公式。

那么最终从1级上升到9级所需次数期望 = E_2 + E_3 + E_4 + … + E_9, 可以根据等比数列求和公式求得。


Read full article from 游戏面试题-武器升级 - tenos - 博客园


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts