论智



论智

打造高效的机器学习系统意味着要问很多问题,仅仅训练模型是不够的,优秀的机器学习专家会像侦探一样,对模型进行详细调查,以更好地理解它们:数据点的改变将如何影响模型的预测?针对不同的群体,模型的表现有何不同?我要测试的数据集中包含多少种类的数据?

想要回答这类问题可并不容易。研究机器学习模型的使用场景通常要用定制的、一次性的代码分析。这一过程不仅低效,而且对不会编程的人员也不友好。谷歌AI PAIR计划其中一个努力方向就是让更多的人能参与到机器学习系统的检查、评估和debug中来。

今天,我们发布What-If工具,这是一款新的开源TensorBoard网页应用,能让我们无需编写代码就能分析一款机器学习模型。给定一个TensorFlow模型和数据集,What-If工具可以展示出表现模型结果的交互界面。


Read full article from 论智


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts