增加你在美国找工作获得内推机会的10条建议 | 美国留学就业规划|Warald咨询



增加你在美国找工作获得内推机会的10条建议 | 美国留学就业规划|Warald咨询

1. 简历要靠谱。
的确很多人的简历typo一堆,或者言辞过于浮夸,或者跟职位完全不match,或者你18个月后才能上班但是你非要现在申请。

2. 仔细读过job description和内推要求。
不要明明别人要求3年经验的,你非要fresh grad去申。别人明明要求expert knowledge inXYZ,而你仅仅听说过这些包的名字就去申请。

3.写个自我介绍。
别人就不需要花费时间去从你简历里面找你的基本信息了,起码三言两语说一下自己的学位学校,会什么工具,实事求是的说一下自己的水平,希望找什么样的工作 — 至于要不要吹嘘自己刷题多少遍,这个得看人。warald见过有科班出身技术很强的人,鄙视刷题的。如果你在Linedin上找,要小心了,不要摸不清对方喜好就开始吹呼自己刷题是熟练工;但是网上帖广告提供内推的人,因为没有别的办法了解你,提刷也许不是件坏事,至少说明你努力准备了。


Read full article from 增加你在美国找工作获得内推机会的10条建议 | 美国留学就业规划|Warald咨询


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts