Teuvo Kohonen和他的SOM | 书脊



Teuvo Kohonen和他的SOM | 书脊

Teuvo Kohonen是一位芬兰的科学家, 介绍满街都是,可以自行google, 我就贴一个google scholar (https://scholar.google.com/scholar?hl=en&q=Teuvo+Kohonen&btnG=&as_sdt=1%2C16&as_sdtp=)

Kohonen博士为什么那么伟大呢? 让我慢慢道来, 在deep learning中, 无监督学习(unsupervised learning)一直是最受关注的焦点, 其中, 各种算法不计其数, 但是人工神经网络算法中, 最著名的算法, 就当属Kohonen博士开发的Kohonen SOM(Self-Organizing Maps), 这个著名有几个理由:

首先, Kohonen SOM是当今运用最广泛, 最贴近真实的神经激活方式的一种模拟人工神经网络, 这种真实体现在Kohonen博士对神经激活时, 状态的转换方程和激活后, 神经元之间关系的特殊理解. 举个栗子: 当你手指扎刺的时候, 神经传输到大脑, 你会感到疼痛, 但是当你脚趾扎刺的时候, 同样的疼痛, 你大脑反应会和手指不同, 因为神经元之间的固定初始位置,导致了神经冲动的传输有了衰减, 这种衰减可以被看做是learning rate的递减, 也可以想象成是一种regularization, 这种regularization是一种常态的regularization, 也就是说, 他并不是人为干预的衰减, 而是取决于神经元本身的固定属性(比如神经元之间的初始固定位置). 这也就是为什么Kohonen SOM是模仿人类神经冲动传导最好的人工神经网络.

其次, Kohonen SOM的neighborhood function, 在每次调用的时候, 更新当前随机选中的神经元,然后传导至所有的神经元. 这种全局更新的方法, 虽然很浪费时间, 但是保证了传导的准确性,举个栗子: 还是上面的例子, 虽然脚趾扎了个刺没有手指痛, 但是你不能不告诉大脑, 脚趾扎刺了. 当然, 有时候,真的因为这个神经冲动太小了, 脚上干裂了个小口子, 很多时候人自己感觉不到. 但是即使是很小的冲动, 也要更新所有的神经元, 这个思路是没错的.

displaymath1981

这个就是neighborhood function, a(t) 是个递减函数, 没啥大意思, 我就用了一个线性递减, ri和rc是两个神经元, theta(t) 是个衰减参数.

最后, Kohonen network的本质是由两个hidden layer的神经网络组成, 首先是一个Hamming network, input是低维vector的数组(n-tuple), 然后通过全联通网络, 返回互相直接的weight. 然后是一个maxnet network, maxnet的input是一个weight vector, 通过递归的方法, 返回最大weight神经元的index, 并且让其它的神经元同比衰减. 因为有maxnet的存在, 所以Kohonen SOM是Winner Take-All learning.


Read full article from Teuvo Kohonen和他的SOM | 书脊


No comments:

Post a Comment

Labels

Algorithm (219) Lucene (130) LeetCode (97) Database (36) Data Structure (33) text mining (28) Solr (27) java (27) Mathematical Algorithm (26) Difficult Algorithm (25) Logic Thinking (23) Puzzles (23) Bit Algorithms (22) Math (21) List (20) Dynamic Programming (19) Linux (19) Tree (18) Machine Learning (15) EPI (11) Queue (11) Smart Algorithm (11) Operating System (9) Java Basic (8) Recursive Algorithm (8) Stack (8) Eclipse (7) Scala (7) Tika (7) J2EE (6) Monitoring (6) Trie (6) Concurrency (5) Geometry Algorithm (5) Greedy Algorithm (5) Mahout (5) MySQL (5) xpost (5) C (4) Interview (4) Vi (4) regular expression (4) to-do (4) C++ (3) Chrome (3) Divide and Conquer (3) Graph Algorithm (3) Permutation (3) Powershell (3) Random (3) Segment Tree (3) UIMA (3) Union-Find (3) Video (3) Virtualization (3) Windows (3) XML (3) Advanced Data Structure (2) Android (2) Bash (2) Classic Algorithm (2) Debugging (2) Design Pattern (2) Google (2) Hadoop (2) Java Collections (2) Markov Chains (2) Probabilities (2) Shell (2) Site (2) Web Development (2) Workplace (2) angularjs (2) .Net (1) Amazon Interview (1) Android Studio (1) Array (1) Boilerpipe (1) Book Notes (1) ChromeOS (1) Chromebook (1) Codility (1) Desgin (1) Design (1) Divide and Conqure (1) GAE (1) Google Interview (1) Great Stuff (1) Hash (1) High Tech Companies (1) Improving (1) LifeTips (1) Maven (1) Network (1) Performance (1) Programming (1) Resources (1) Sampling (1) Sed (1) Smart Thinking (1) Sort (1) Spark (1) Stanford NLP (1) System Design (1) Trove (1) VIP (1) tools (1)

Popular Posts