Docker生态会重蹈Hadoop的覆辙吗?
1、开发者能够用Docker,开发者要一个开发环境,总会涉及到种种资源,比如数据库,比如消息中间件,去装这些东西不是开发人员的技能,是运维人员的技能。而用Docker去Pull一个mySQL镜像,或是Tomcat镜像,或是RabbitMQ镜像,简易轻松,几乎是零运维。做好了应用代码,打一个Docker镜像给测试或是运维人员,避免了从前打个程序包给测试或是运维人员,测试或运维人员要部署、配置应用,还得反反复复来麻烦开发人员,现在好了,丢个Docker镜像过去,让运维人员跑镜像就可以,配置在镜像里基本都做好了。
这正好满足了DevOps的要求,所以DevOps也一下热起来了。开发者是一个巨大的市场,是海量的个体,通过类似于病毒式的传销,Docker一下在开发者中热起来了。
2、镜像仓库和开源,谁都可以用,Docker镜像库非常丰富,谁做好一个镜像都可以往公有仓库推送,开发人员需要一个环境的时候,可以到Docker镜像仓库去查,有海量的选择,减少了大量无谓的环境安装工作。而通过开源,又开始大规模传播。
我们再来回顾看看2010-2013年,大数据的名词火遍大江南北,各行各业都在谈大数据,但是落到技术上就是Hadoop,还记得2012年的时候,和Hadoop没啥毛关系的VMWare也赶紧的做了一个虚机上部署Hadoop的serengeti,谁家产品要是和Hadoop不沾点边,不好意思说自己是IT公司。Hadoop当年的热度绝对不亚于2014-2015的Docker。而且时间上有一定的连续性,2014年开始,Hadoop热度达到顶点,开始逐渐降温,标志事件就是Intel投资Cloudera。而Docker是从2014年开始热度升高的。
再看Hadoop为何在2010年前后开始热起来,之前的大数据都是数据仓库,是昂贵的企业级数据分析并行数据库,而Hadoop是廉价的大数据处理模式,通过开源和X86廉价硬件,使得Hadoop可以大规模使用,而互联网时代产生的海量数据虽然垃圾居多,但是沙里淘金,也能淘出点价值,Hadoop正好迎合了这两个需求,虽然Hadoop的无论是功能还是性能远比MPP数据库差,但做简单的数据存储、数据查询、简单数据统计分析还是可以胜任的,事实上,到目前为止,大多数的Hadoop应用也就是数据存储、数据查询和简单的数据统计分析、ETL的业务处理。Read full article from Docker生态会重蹈Hadoop的覆辙吗?
No comments:
Post a Comment